

Hyponatrémie : que faire ?1-6

Rédacteurs : Isselmou M'BARECK

Relecteur : Bruno MOULIN, Dominique GUERROT

1. Points clés - à ne pas manquer

- A priori la plupart des hyponatrémies sont chroniques (constitution > 48h)
- Tenir compte des symptômes cliniques pour évaluer la sévérité
- Ne pas corriger trop rapidement une hyponatrémie chronique même symptomatique (<8-10mmol/L sur les 24 1ères heures)
- Stratégies de correction adaptées en fonction des 3 principales situations dépendant de l'état de la volémie

2. Définitions

- Hyponatrémie vraie (est associée à une hypoosmolalité) définie par une natrémie inférieure à 135 mmol/L. Correspond à un état d'hyperhydratation intracellulaire *Point d'attention*: en cas d'hypertriglycéridémie ou d'hyperprotidémie sévère, possible hyponatrémie factice (rare avec le dosage en potentiométrie directe actuellement)
 - Hyponatrémies iso ou hypertoniques (osmolalité augmentée): au cours des hyperglycémies majeures ou d'intoxications avec substances osmotiquement actives (méthanol, éthanol...):
 - Hyponatrémies associées à déshydratation cellulaire : risques liés à un traitement conventionnel de l'hyponatrémie.
 - Calcul de la natrémie corrigée ([Na]c) en cas d'hyperglycémie : Si Glycémie en g/L [Na]c = [Na]_p + 2 x [Glucose (mmol) - 5,5] /5,5 Si Glycémie en mmol/L [Na]c = [Na]_p + 2 x [Glucose (g/L) -1]
- La tolérance est inversement corrélée à la vitesse d'installation du trouble : une hyponatrémie d'installation rapide sera moins bien tolérée qu'une hyponatrémie chronique
- o Distinguer hyponatrémie aiguë et chronique (-> installation en plus de 48 h correspondant à la majorité des hyponatrémies hospitalisées).
- o !! Attention : hyponatrémie symptomatique n'implique pas hyponatrémie aiguë

3. Clinique

Signes de gravité Hyponatrémie sévère ¹	Signes neurologiques, troubles de conscience (Glasgow <8) - Somnolence Vomissements Comitialité Détresse cardio-respiratoire
Objectifs de l'examen clinique	Évaluation de la gravité sur le plan neurologique Évaluation du secteur extracellulaire Examen général pour éliminer une cause sous-jacente : infection ? cancer ? Anamnèse et enquête médicamenteuse (++)

- Dénutrition, alcoolisme, hypoxie
- Na < 110 mmol/L, hypokaliémie
- Correction trop rapide (hyponatrémie hypovolémique)

4. Diagnostic et examens complémentaires

	•
Diagnostic positif	Prescrire d'emblée : Natrémie avec ionogramme complet, osmolalité plasmatique mesurée (ou à défaut calculée) Et Osmolalité urinaire (mesurée ou calculée)
Biologie	Uricémie Natriurèse BNP TSH, Cortisol 8h
Imagerie	POCUS (échographie) ou impédancemétrie pour évaluer le secteur extracellulaire en complément de la clinique (selon les possibilités locales)
Autres (à distance)	TDM TAP / TEP TDM / IRM cérébrale en fonction de l'étiologie (surtout si SiADH évoqué)

5. Raisonnement clinique

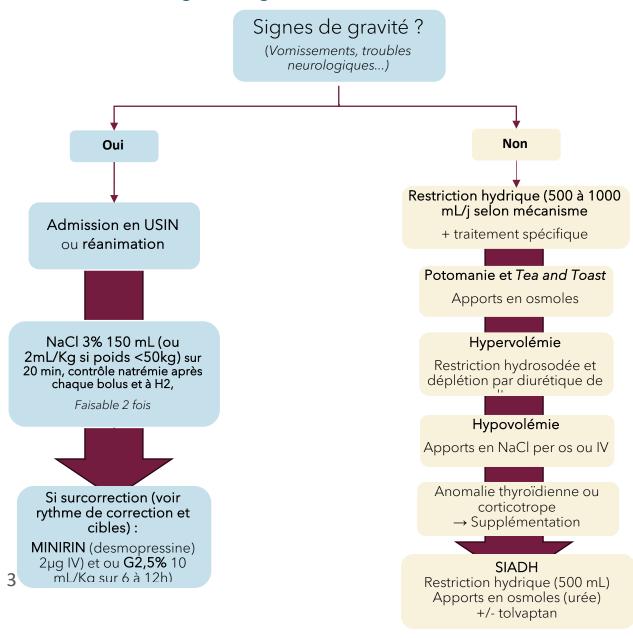
Le diagnostic étiologique des hyponatrémies passe par tout au plus, 4 questions qu'il faut se poser, comme figurant sur le schéma ci-dessous :

Après avoir confirmé le diagnostic d'hyponatrémie (étape 1), il faut s'intéresser au comportement rénal en regardant l'osmolarité urinaire (étape 2) :

- < 100-150 mOsm/L : Comportement rénal adapté ↔ urines diluées.
 - o Charge hydrique trop importante (potomanie)
 - o Syndrome Tea and toast (apport d'osmoles insuffisant)
- > 100-150 mOsm/L : : Comportement rénal inadapté = Trouble de la dilution ↔ excès d'ADH.

Deux mécanismes possibles :

- Stimulation de l'ADH via les barorécepteurs (hypovolémie vraie ou efficace)
- Ou Sécrétion inadaptée de l'ADH (SIADH)


En sachant que le principal autre stimulus que **l'osmorécepteur** pour la sécrétion d'ADH est les **baro** et **volorécepteur** (détecteur de volémie extracellulaire), on étudie le secteur extracellulaire (étape 3) si les urines sont concentrées :

- Hypovolémie efficace : Insuffisance cardiaque sévère avec syndrome œdémateux fréquent (FE altérée ++) → distension OG/OD / baisse du VES → stimulation barorécepteur carotidien / volorécepteur → ADH PEC -> Déplétion (restriction sodée et hydrique, diurétiques de l'anse).
- Hypovolémie vraie (hypotension (orthostatique), Natriurèse <30 mmol/L ++, souvent contexte de diurétique thiazidique) : stimulus volo dépendant. PEC : correction de l'hypovolémie par soluté salé 9‰.
- Volémie normale : pas de stimulus volo dépendant.

Point d'attention : le diagnostic d'hypovolémie vraie est parfois difficile (confusion avec tableau de SiADH).

S'il n'y a pas de stimulus volo dépendant, l'étude de la voie corticotrope (et thyréotrope, exceptionnel) (étape 4), est recommandée avant de conclure à un SIADH.

6. Prise en charge en urgence

La question de la restriction hydrique :

Utiliser le rapport des électrolytes U/P (concept d'élimination de l'eau libre)

 $[Na^{+}]_{u} + [K^{+}]_{u}$

Urine / Plasma	Apports H₂O
> 1,0	0 mL
0,5-1,0	Jusqu'à 500 mL
< 0,5	Jusqu'à 1 L

Rythme de correction :

- < 10 mmol sur les premières 24h</p>
- < 18 mmol/48h
- <u>Si hyponatrémie aiguë (constituée en <48 h) symptomatique,</u> traitement comme une hyponatrémie grave
- Facteurs de risque de myélinolyse centropontine : corriger lentement (< 8 mmol/24h)

Traitement des hyponatrémies chroniques asymptomatiques :

- Si hypovolémie vraie (thiazidiques ++) -> freiner stimulation ADH
 - o Soluté salé 9% 0,5 à 1 L/h (**surveillance de la natrémie**, risque de surcorrection)
- Pour le SIADH (hyponatrémie euvolémique) :
 - o Restriction hydrique simple (<500mL/j) et si insuffisant
 - o Apports en Osmoles :
 - Urée (0,25 à 0,5g/kg)
 - Diurétiques de l'anse (Furosémide 20 à 60mg/j) et NaCl PO
 - o Si échec : Antagoniste des récepteurs V2 (Tolvaptan) à discuter (Et en dehors du contexte d'urgence (++) sans restriction hydrique)
- Si hyperhydratation extra-¢ associée (insuffisance cardiaque) : Restriction hydro-sodée et diurétiques de l'anse

!! En cas de doute diagnostic à la phase initiale avec un patient euvolémique, un test au soluté salé isotonique peut aider avec apport de NaCl 0,9% 1L sur 6-12 heures :

- Aggravation : Probable SIADH
- <u>Amélioration</u>: Stimulus lié à **l'hypovolémie** ou cas **d'inadéquation charge hydrique/osmoles** (*tea and toast*), corrigé par les osmoles apportées

++ Penser à :

- Correction d'une hypokaliémie mais potentiellement associée au risque de surcorrection de la natrémie (surveillance iono accrue).
- Oxygénothérapie chez les patients à risque de MCP

SOURCES

- 1. Spasovski, G., Vanholder, R., Allolio, B., Annane, D., Ball, S., Bichet, D., Decaux, G., Fenske, W., Hoorn, E.J., Ichai, C., et al. (2014). Clinical practice guideline on diagnosis and treatment of hyponatraemia. Nephrology Dialysis Transplantation *29*, i1-i39. https://doi.org/10.1093/ndt/gfu040.
- 2. Zaworski, J., and Vrtovsnik, F. (2025). Diagnostique étiologique et traitement de l'hyponatrémie. La Presse Médicale Formation 6, 100600. https://doi.org/10.1016/j.lpmfor.2025.100600.
- 3. Albert, N.M., Nutter, B., Forney, J., Slifcak, E., and Wilson Tang, W.H. (2013). A Randomized Controlled Pilot Study of Outcomes of Strict Allowance of Fluid Therapy in Hyponatremic Heart Failure (SALT-HF). https://doi.org/10.1016/j.cardfail.2012.11.007.
- 4. Use of Desmopressin Acetate in Severe Hyponatremia in the Intensive Care Unit PMC https://pmc.ncbi.nlm.nih.gov/articles/PMC3913226/.

- 5. Sterns, R. H. et al. Treatment Guidelines for Hyponatremia. Clin. J. Am. Soc. Nephrol. 19, 129-135 (2024).
- 6. Moulin, B. et Guerrot, D. Hyponatrémie- CUEN Chap 2 Néphrologie 11ème Ed 2024 chez Ellipses